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It is shown that the equations of a solitary wave interacting with an external field 
can be obtained from the noninteraction equations and a substitution analogous 
to the prescription of quantum mechanics for the energy and momentum operators 
in the presence of an interaction. Next it is shown that, if the rate of change of 
the external field is sufficiently small, then the motion of the solitary wave as a 
whole is identical to that of a point charge in an electromagnetic field or to that 
of a point mass in a given interaction potential. This identity holds regardless of 
the specific solitary wave equation. An estimate for the external field maximal 
rate of change is derived. 

1. I N T R O D U C T I O N  

The term soli tary wave  will appear many times in the fol lowing discus- 
sion. Since there seems to be no universally accepted definition for it, the 
meaning assigned to it, at least for the purposes o f  this paper, will be stated 
in the following: 

S W  Definit ion.  A solitary wave (SW) is a solution o f  any one partial 
differential equation or  a system o f  such equations in three or  less independent 
space variables and the time, which is derivable f rom a Lagrangian density, 
such that the integral over  all space o f  that density is finite and nonzero for 
all time when a SW solution is substituted in it. 

Stated briefly, a solitary wave is a solution o f  the above class o f  differen- 
tial equations which is localized in space for all time. A wave packet, for 
example, is not a solitary wave. 

The most-studied SW solutions are those o f  the nonlinear K le in -Gordon  
(KG) equation. The first to investigate the stability o f  such solutions were 
Anderson and Derrick (1970; Anderson,  1971). Later work treated the ques- 
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tion as a problem in functional analysis (Berger, 1972; Grillakis et al., 1987; 
Strauss, 1989) and obtained stability criteria related to the nonlinear term in 
the KG equation. Lee (1981) included a short discussion on this subject in 
his book. The mutual interaction between two nonstable (finite lifetime) SWs 
of a real nonlinear KG equation was studied by Okolowski and Slomiana 
(1988), who showed that this interaction is due to the same nonlinearity 
which is responsible for their localization in space. A model of leptons was 
given by Cooperstock and Rosen (1989) based on a complex system of four 
interacting fields, three of which are scalar and one of which is a 4-vector 
field. Friedberg et al. (1976) reported on an extensive investigation of a 
system of two interacting scalar fields, represented by two coupled nonlinear 
KG equations, and intended to serve as a possible model of elementary 
particles. 

Although there is no lack of publications related to solitary waves, I 
have not found any which treat the interaction of solitary waves with a given 
external field. However, there are several works on the Kle in-Gordon-  
Maxwell system (Rosen, 1939; Deumens, 1986; Kobushkin and Chepilko, 
1990) which share some common ground with this paper. The underlying 
idea is the same in all three. The solitary waves are formed from a scalar 
complex field interacting with an electromagnetic (EM) field. The last is 
considered to be the sum of external and internal components. The internal 
component is assumed to be created by the scalar field via the Maxwell 
equations. Hence, the last become nonlinearly coupled to the KG equation 
of the scalar field. In spite of its attractiveness, this idea has not produced 
the results hoped for. The similarity with our work is in the way (gauge 
invariant) the EM potentials enter the KG equation. The difference is that 
our work treats these potentials as strictly external and given (just as in 
quantum mechanics). This is a very important distinction. It is the reason for 
mentioning the above three works. Had we made the same assumption as 
theirs, our results could not have been obtained. 

In what follows we consider the interaction of the solitary waves (not 
just of the nonlinear KG equation, but those of all known and not yet 
known complex nonlinear equations which admit such solutions) with a given 
external field. Attention will be focused on the macroscopic aspect of the 
interaction--that is, the motion of the solitary wave as a whole. Questions 
concerning the variations in size and in shape, or of the SW stability due to 
the interaction, will not be addressed. To do the first, the SW position will 
be identified with the position of a suitably defined center of its charge. And 
to do that, one needs to have a well-defined charge density associated with 
the solitary wave, which in turn requires that the SW equations be derivable 
from a Lagrangian density. This is a natural requirement since the solitary 
waves are expected to possess certain conserved quantities, like charge and 
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mass, which are well defined and their conservation guaranteed when such 
density exists. 

If the motion of a solitary wave is affected by a given external field 
U~, it must be because that field enters as a variable in its differential equation 
and hence in its Lagrangian density 

~e[~, u] : ~e(4*,, ~p,,, 4", ~p, u~) 

where t~p, 4 "  are the components of the SW wave function and their complex 
conjugates. 4p,~ = 0~p/tgx~ and 4p*~ = Ot~*/Ox~ are their derivatives with 
respect to the space and time coordinates. (All densities in this paper are 
denoted with capital script letters.) The number of  the wave function compo- 
nents is left unspecified, so that Op can be a scalar field when p = 1, a 2- 
spinor field when p = 1, 2, a 4-spinor field when p = 1, 2, 3, 4, or a 4- 
vector field when p = 0, 1, 2, 3. The field U.  with which the solitary wave 
interacts is assumed to be a real 4-potential or a scalar potential field. There 
are no restrictions on it, except that its free-field equations must also be 
derivable from a Lagrangian density 

Ar[UI = N(U~,., U~) 

where U.,~ = OUJOx~ for Ix, v = 0, 1, 2, 3 or for v = 1, 2, 3, Ix = 0. 
The main objective of this work is to show that, under some very general 

assumptions, the space integral of the solitary wave Lagrangian density 

L = [ ~[t~, U] d3x 

is identical with the Lagrangian function of a point charge moving in an 
electromagnetic field (4-potential) or with the Lagrangianfunction of a point 
mass moving in a scalar potential. Since the second is a special case of the 
first, U will be assumed to be a 4-potential field. 

2. THE LAGRANGIAN DENSITY FOR AN INTERACTING 
SOLITARY WAVE 

Since N[U] is the free U-field Lagrangian density (no sources), it cannot 
depend on 4p- The Lagrangian density for the system of  the interacting 4- 

field and U-field is 

~ = .~'[U] + ~e[4, U] (1) 

Now, the role of U in ~ [~ ,  U] must be made more specific than just 
that of a parameter. One observes that a physical field acts on entities which 
by themselves are sources of fields of the same type. Thus, not only must 
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the field sources, if distributed, be densities obeying a conservation law, but 
so must the entities on which af ield acts be densities obeying a conservation 
law. Hence, we must demand that the U-field acts on the @field via a set 
of four conserved densities 9~  associated with the O-field. The densities 9 ,  
always exist, provided that the following condition holds. 

Condition 1. The Lagrangian density ~[O, U] = ~(Op*~, Op,~, O*, Op, 
U~) is invariant under the transformation with parameter 

O'p = eieOp, Op* = e-i'O~ (2) 

Then they are given by (the summation convention is assumed for the 
entire paper) 

O~ O~ 
9p. = i0p O0P,P- i0* O0p*~ (3) 

and their existence is a consequence of Noether's theorem. They are 
conserved, 

0 ~ _  0~o 
+ V - 9  = 0  with t = x 0  

Ox~ Ot 

and thus qualify to be the sources of a physical field. 90 and 9 = (91, 92, 
93) are the density and the current density vector of the sources (a barred 
letter will be used to denote any 3-vector). Some outstanding discussions on 
Noether's theorem and its applications can be found in Goldstein (1981, 
Section 12.7), Logan (1977, Sections 2.4 and 8.4), and Olver 0993, Sections 
4.4 and 5.3). Having defined the total Lagrangian density if  allows us to 
write down the Euler-Lagrange equations for the U-field 

. - 

Taking into account (1), we find that this becomes 

Without the right-side term, these would be the equations of a free U-field. 
With it, they describe a source-driven U-field, and the sources, of course, 
are represented by just that term. Now, the statement U~ acts on Oo via 9 ~  
can be made mathematically precise. 

Condition 2. The sources of the U-field must be proportional to the set 
of densities 9~  associated with the 0-field. That is, 
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- * *  (5) 

where g is the constant of proportionality, which may be different for different 
types of SW equations. 

This is the second qualification which ~[~ ,  U] has to meet if it is to 
describe a solitary wave in interaction with the U-field. Obviously, Condition 
2 was not mathematically derived. It was accepted on the grounds of general 
considerations, as briefly outlined above. The correctness or incorrectness of 
this choice can be shown only by the results which are derivable from it. 
First, Condition 2 will be used to make the functional dependence of ~[~ ,  
U] on U as specific as possible, while leaving its dependence on ~ as general 
as possible. 

Theorem 1. Any Lagrangian density ~[~ ,  U] for which the set of densities 
~ are defined by Condition 1 and which satisfies Condition 2, 

O 
- - ~ [ , ,  U] = g S ~  (6) 
OUr 

is of the form 

~[~ ,  U] = ~(~*~ - igU~O*, Op,~ + igU~Op, ~*, d&) (7) 

Proof. To see that any Lagrangian density of the above form satisfies 
Condition 2 it is sufficient to differentiate it with respect to U~. Next we 
observe that the equation 

O U~ = i g * , -  - i g t ~ * -  O'qp~ Ov] *~ 

where ~]p~ is an as-yet-unspecified variable, can be an identity, that is, satisfied 
for any ~ ,  only if 

This means that 

OU~ dU~ O'qp~ dU~ O'q*~ 

d'qp~ d'q*~_ igO* 
dU~ - igt~p and dU~ 

It is trivial to integrate the last equations, since U~,, ~0, and ~* are independent 
variables in the function ~[~ ,  U]. Hence -%~ = co~ + igU~t~p and Xl*~ = 
c*~ - igU~d~*, where c,~ and c*~ are the integration constants. Because 
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Condition 2 must hold at all values of  U., it holds at U~ = 0 when "qp~ = 
0p.~ and -q*~ = 0"~- Then it follows that cp~ tpp,~ and c*~ = ~p,~, showing that 

xlp~ = 0p.~ + igU~d~p and "q*~ = Op*,~ - igU~t~ 

which in turn proves the theorem. 
The result (7) can be obtained, of  course, by simply requiring that the 

Lagrangian density ~[t~, U] be gauge invarianr However, from this paper's 
viewpoint, Condition 2 is easier to justify by physical arguments than the 
gauge invariance. Hence, it is more meaningful to postulate Condition 2 and 
derive the gauge invariance from it than vice versa. 

3. A PRESCRIPTION FROM QUANTUM MECHANICS 

Having made the functional dependence of  ~[~ ,  U] on U quite specific, 
we see that the Euler-Lagrange equations for Op become more specific, too. 
Since A r is not a function of  r we get from 

- o,--: = o 

immediately the results 

) a:e ~ (8) 

where, as before, 

~qP~ = Ox~ + igU~t~p, "q*~ = Ox~ - igU~t~* 

This important result deserves to be stated in words: 
Given a solitary wave equation derivable from a Lagrangian density 

which satisfies Conditions 1 and 2, one can f ind the equation of the same 
solitary wave when interacting with a given external real 4-potential f ield 
U~ by replacing all space and time derivatives in the given equation according 
to the following rule: 

0 0 
- -  --> - -  + igU~, I~ = 0, I, 2, 3 (9) 
Ox~ Ox~ 

In this, one of course recognizes the fundamental prescription ofquan- 
turn mechanics 

0 0 
ih ---> ih + eA~ (10) 

Ox~ Ox~ 
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for the energy and momentum operators in the presence of an interaction. 
But unlike the QM prescription, which is intended to be used only with the 
equations of quantum mechanics, all of which are linear, the rule (9), as 
shown already, can be used with a much larger class of equations--both 
linear and nonlinear. 

4. THE LAGRANGIAN FUNCTION FOR AN INTERACTING 
SOLITARY WAVE 

All ~-fie.ld/U-field systems may naturally be divided into two classes: 
those with slowly varying and those with rapidly varying U-fields, both in 
space or in time. A criterion to distinguish between the two classes will be 
derived at the end of this section. Consider the first case, when the U-field 
varies sufficiently slowly so that it can be treated as a constant in the SW 
Lagrangian density (but not in the SW Lagrangian function, of course). Then 
one can draw a few more conclusions without any additional assumptions. 
That is, one can find the Lagrangian function 

L(U) = I ~s U] d3x (11) 

which governs the macroscopic motion of the solitary wave. Here the integral 
domain is all space and the integral is nonzero and finite by continuity 
considerations and by the SW definition. At this level the integral obviously 
cannot be calculated directly. However, we do know that if the density ~[~,  
U] was given explicitly, the result of the integration would be a function of 
U~, evaluated at the SW position, and of the SW velocity. Therefore, we 
need to specify the position of the solitary wave as a whole. It is to be given 
by the k-coordinates of its center of charge Xk, defined as follows: 

1 I X ~ = ~  Xk~od3x for k =  1 ,2 ,3  (12) 

where 

= i~bp 0___~ _ i*~ 0~  I ~0 0~bp.0 a**---~o ' Q = _ ~o dax 

are the SW charge density and the SW total charge, respectively. Since the 
U~ are assumed to be constant within the space occupied by the SW, the 
integral (1 1) can be differentiated with respect to U~: 

~  ~ I cgUr - ~  ~[t~, U] d3x = g ~ d3x 
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Here, the second equality is just an application of Condition 2--equation 
(6). This gives for I~ = 0 and I~ = k, respectively, 

OUo - g ~D d 3x = gQ (13) 

o,. I OU~ - g ~ d3x (14) 

with ~k being the current density associated with ~p. Using the conservation 
law for ~ and the definition of the SW center Xk, one can express the k- 
component of the SW velocity Vk as 

lfO o ~x If 
- T i -  - e - -g-  d x = , 2  Ox--T = -d d3x 

The last result and (14) produce 

aL 
- g Q V k  for k =  1 ,2 ,3  (15) 

ouk 

Thus, we obtain a system of four partial differential equations: equations 
(13) and (15). Since the total charge Q is conserved, it cannot depend on 
U~, which makes the solution of the above system obvious: 

L(U) = gQ(Uo + U~V~ + UzVz + U3V3) + L(O) = gQ(Uo + U. V) + L(O) 
(16) 

One can verify it by substituting it in (13) and (15). Here, L(0) is the integration 
constant, which equals the space integral of the free ~-field Lagrangian density 

L(0) = f ~ [~ '  0] d3x. (17) 

This integral is finite and nonzero by definition--the SW definition. 
The criterion for the U-field maximum rate of change [at which equation 

(16) still holds] is derived as follows. Let Um~x and Umin be, respectively, the 
maximal and minimal U-field values within the SW extent at a given moment 
in a given reference frame. Denote by L(Umax) and L(Umin) the Lagrangian 
function (1 I) when the integral is calculated with the corresponding fixed 
values of U. (Naturally, we assume that U is a monotonic function of the 
coordinates within the SW extent.) Then if the inequality 

L(Umax) - L(Umin) < <  L(Umin) 

holds, one is permitted to treat U as a constant when integrating (11). With 
the use of previous results we can write 
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L( Umax) - L( Umj,) ~" 

Hence, the criterion is 

OL(U) 8Ur = gQ(~Uo + V . ~ U )  

a UI-t" Umin 

- -  L ( U )  
IgU01 + IVI.IgUI < <  ~ (18) 

where I~U01 and I~UI are the maximal  variations of the U-field components 
over the solitary wave extent and IVI is the SW velocity magnitude. For an 
estimate of the SW radius R one can use 

13 I R2 =  o(x, - xk) d3x 

where the integral domain is all space. 

5. CONCLUSIONS 

(a) The first term in the SW Lagrangian function (16) is precisely the 
same as the interaction term in the Lagrangian function for a point charge 
with magnitude q = gQ moving in an electromagnetic 4-potential field A~ 
= U~. For the standard treatment of point-charge Lagrangian functions the 
reader is referred to Goldstein (1981, Sections 7.8 and 8.1) or Jackson (1975, 
Section 12.1). If we choose the density ~[~,  0] to be Lorentz invariant, then 
the integral (17) gives 

I . (0)  = M , f i  - v 2 (c  = 1) 

where V is the magnitude of the SW velocity and M is a constant determined 
only by the properties of the specific SW equation, which of course should 
be identified with the solitary wave rest mass.  Then the expression (16) is 
completely identical with the Lagrangian function for a relativistic charge. 
For small velocities, L(O) = M - �89 2, giving the nonrelativistic case, after 
the constant term M is discarded. The following conclusion will be stated as 
a theorem: 

Theorem 2. If the equations which possess a solitary wave solution are 
derivable from a Lorentz-invariant Lagrangian density satisfying Conditions 
1 and 2, and if the U-field is slowly varying, according to criterion (18), 
then the equations for the macroscopic motion of that solitary wave are 
identical with those describing the motion of a point charge proportional to 
Q in an electromagnetic 4-potential field proportional to U. This identity 
holds regardless of the specific @field equations. 
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Proof. It was already shown that the SW Lagrangian function obtained 
from any SW Lagrangian density (satisfying the above conditions) is identical, 
within constants of proportionality, to that of a point charge in an electromag- 
netic field. Since the equations of motion are uniquely determined by the 
corresponding Lagrangian functions, the theorem follows. 

(b) The motion of a solitary wave in a field with a scalar potential W 
(of unspecified physical nature--not  only electrical) is a special case of (a). 
This case is obtained by setting 

W 
U o -  and Uk--O, k =  1 , 2 , 3  gQ 

in (16). Then the SW Lagrangian function 

L = W + L(0) 

corresponds to that of a point mass with a potential energy W. The 0-field 
equation(s) obtained with the use of the single substitution 

0 0 W 
- - - - - - ~ -  + i - -  (19) 
OXo OXo Q 

then are analogous to the SchrOdinger equation describing the motion of a 
particle in a potential W. The substitution (19) is analogous, of course, to the 
QM prescription for the energy operator. 

(c) It is very satisfying that, starting with equations for the SW 0-field 
which must be nonlinear (in order to possess solitary wave solutions), one 
arrives at equations for the SW macroscopic motion which are strictly linear, 
both in OU~lOx~ and in gQ. 

(d) The reader most probably has noticed that conclusion (a) is analogous 
to the Ehrenfests theorem in quantum mechanics. There is a very good reading 
on this theorem in Kramer (1958, Section 30). 

(e) The behavior of a solitary wave will differ drastically from that of 
a point charge or of a point mass if the U-field rate of change is comparable 
to that of the SW 0-field. This is because when the criterion (18) is violated, 
one cannot differentiate with respect to U~ under the integral sign in (1 l), 
and consequently the SW Lagrangian function, if it can be defined at all, 
will differ drastically from that of a point charge or a point mass. Analogies 
with quantum mechanics come to mind again; however, their discussion is 
beyond the scope of the present topic. 

REFERENCES 

Anderson, D. ( 1971 ). Stability of time-dependent particlelike solutions in nonlinear field theories 
II, Journal of Mathematical Physics, 12, 945-952. 



Solitary Waves Interacting with an External Field 2499 

Anderson, D., and Derrick, G. (1970). Stability of time-dependent particlelike solutions in 
nonlinear field theories I, Journal of Mathematical Physics, 11, 1336-1346. 

Berger, M. (1972). On the existence and structure of stationary states for a nonlinear KG 
equation, Journal of Functional Analysis, 9, 249-261. 

Cooperstock, E, and Rosen, N. (1989). A nonlinear gauge-invariant field theory of leptons, 
International Journal of Theoretical Physics, 28, 423-440. 

Deumens, E. (1986). The Klein-Gordon-Maxwell system of equations, Physica D, 18, 
371-373. 

Friedberg, R., Lee, T. D., and Sirlin, A. (1976). Class of scalar-field soliton solutions in three 
space dimensions, Physical Review D, 13, 2739-2761. 

Goldstein, H. (1981). Classical Mechanics, 2nd ed., Addison-Wesley, Reading, Massachusetts. 
Grillakis, J., Shatah, J., and Strauss, W. (1987). Stability theory of solitary waves in the presence 

of symmetry, Journal of Functional Analysis, 74, 160-197. 
Jackson, J. (1975). Classical Electrodynamics, 2nd ed., Wiley, New York. 
Kobushkin, A., and Chepilko, N. (1990). Soliton model of elementary electrical charge, Matema- 

ticheskaia Fizika, 83(3), 349-359 [in Russian]. 
Kramers, H. (1958). Quantum Mechanics, North-Holland, Amsterdam. 
Lee, T. D. (1981). Particle Physics and Introduction to Field Theory, Harwood. 
Logan, J. (1977). lnvariant Variational Principles, Academic Press, New York. 
Okolowski, J., and Slomiana, M. (1988). Particlelike solutions to nonlinear classical real field 

theories, Journal of Mathematical Physics, 29, 1837-1839. 
Rosen, N. (1939). A field theory of elementary particles, Physical Review, 55, 94-101. 
Strauss, W. (1989). Nonlinear Wave Equations, AMS, Providence, Rhode Island. 


